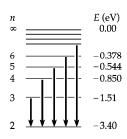


the atom falls from n=3

to
$$n=2$$

losing energy
$$-\frac{13.6 \text{ eV}}{3^2} + \frac{13.6 \text{ eV}}{2^2} = \boxed{1.89 \text{ eV}}$$

The photon frequency is $f = \frac{\Delta E}{h}$



Balmer Series

FIG. P29.5

$$\lambda = \frac{c}{f} = \frac{hc}{\Delta E} = \frac{\left(6.626 \times 10^{-34} \text{ J} \cdot \text{s}\right) \left(3.00 \times 10^8 \text{ m/s}\right) \left(\frac{\text{eV}}{1.60 \times 10^{-19} \text{ J}}\right)}{\left(1.89 \text{ eV}\right)}$$

$$\lambda = \boxed{656 \text{ nm}}$$

(b) The biggest energy loss is for an atom to fall from an ionized configuration,

$$n = \infty$$

to the

$$n=2$$
 state.

$$-\frac{13.6 \text{ eV}}{\infty} + \frac{13.6 \text{ eV}}{2^2} = \boxed{3.40 \text{ eV}}$$

to emit light of wavelength
$$\lambda = \frac{hc}{\Delta E} = \frac{\left(6.626 \times 10^{-34} \text{ J} \cdot \text{s}\right)\left(3.00 \times 10^8 \text{ m/s}\right)}{\left(3.40 \text{ eV}\right)\left(1.60 \times 10^{-19} \text{ J/eV}\right)} = \boxed{365 \text{ nm}}$$

P29.34 Some electrons can give all their kinetic energy $K_e = e\Delta V$ to the creation of a single photon of x-radiation, with

$$hf = \frac{hc}{\lambda} = e\Delta V$$

$$\lambda = \frac{hc}{e\Delta V} = \frac{\left(6.626 \, 1 \times 10^{-34} \, \text{J} \cdot \text{s}\right) \left(2.997 \, 9 \times 10^8 \, \text{m/s}\right)}{\left(1.602 \, 2 \times 10^{-19} \, \text{C}\right) \Delta V} = \boxed{\frac{1 \, 240 \, \text{nm} \cdot \text{V}}{\Delta V}}$$

P30.8 Using atomic masses as given in Table A.3,

(a) For
$${}_{1}^{2}H$$

$$-2.014\,102 + 1(1.008\,665) + 1(1.007\,825)$$

$$\frac{E_b}{A} = (0.001\,194\,\mathrm{u}) \left(\frac{931.5\,\mathrm{MeV}}{\mathrm{u}}\right) = \boxed{1.11\,\mathrm{MeV/nucleon}}$$

(b) For
$${}_{2}^{4}$$
He

$$2(1.008665) + 2(1.007825) - 4.002603$$

$$\frac{E_b}{A} = 0.00759 \text{ u}c^2 = \boxed{7.07 \text{ MeV/nucleon}}$$

(c) For
$${}_{26}^{56}$$
 Fe: $30(1.008665) + 26(1.007825) - 55.934942 = 0.528 \text{ u}$

$$\frac{E_b}{A} = \frac{0.528}{56} = 0.00944 \text{ u} c^2 = \boxed{8.79 \text{ MeV/nucleon}}.$$

(d) For
$$^{238}_{92}$$
U: $146(1.008665) + 92(1.007825) - 238.050783 = 1.9342 u$

$$\frac{E_b}{A} = \frac{1.9342}{238} = 0.00813 uc^2 = \boxed{7.57 \text{ MeV/nucleon}}.$$

P30.19
$$Q = (M_{U-238} - M_{Th-234} - M_{He-4})(931.5 \text{ MeV/u})$$

 $Q = (238.050783 - 234.043596 - 4.002603) \text{ u}(931.5 \text{ MeV/u}) = 4.27 \text{ MeV}$

- **P30.20** (a) A gamma ray has zero charge and it contains no protons or neutrons. So for a gamma ray Z = 0 and A = 0. Keeping the total values of Z and A for the system conserved then requires Z = 28 and A = 65 for X. With this atomic number it must be nickel, and the nucleus must be in an exited state, so it is $\frac{65}{28}Ni^*$.
 - (b) $\alpha = {}^4_2 \text{He has } Z = 2$ and A = 4 so for X we require Z = 84 2 = 82 for Pb and A = 215 4 = 211, $X = \begin{bmatrix} 211 \\ 82 \end{bmatrix} \text{Pb}$.
 - (c) A positron $e^+ = {}^0_1 e$ has charge the same as a nucleus with Z = 1. A neutrino ${}^0_0 V$ has no charge. Neither contains any protons or neutrons. So X must have by conservation Z = 26 + 1 = 27. It is Co. And A = 55 + 0 = 55. It is ${}^{55}_{27}$ Co.

Similar reasoning about balancing the sums of *Z* and *A* across the reaction reveals:

- (d) $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$ e
- (e) $\begin{bmatrix} \frac{1}{1} H \text{ (or p)} \end{bmatrix}$. Note that this process is a nuclear reaction, rather than radioactive decay. We can solve it from the same principles, which are fundamentally conservation of charge and conservation of baryon number.

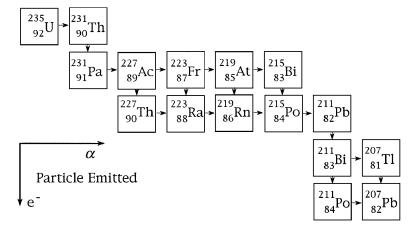


FIG. P30.24

P30.26 (a) For
$$X$$
, $A = 24 + 1 - 4 = 21$ and $Z = 12 + 0 - 2 = 10$, so X is $\begin{bmatrix} 21 \\ 10 \end{bmatrix}$ Ne

(b)
$$A = 235 + 1 - 90 - 2 = 144$$

and $Z = 92 + 0 - 38 - 0 = 54$, so X is $\begin{bmatrix} 144 \\ 54 \end{bmatrix}$ Xe

(c)
$$A = 2 - 2 = 0$$

and $Z = 2 - 1 = +1$, so X must be a positron.
As it is ejected, so is a neutrino: $X = \begin{bmatrix} X = 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ and $X' = \begin{bmatrix} X = 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.