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Summary. — We find a condition on the parameter controlling the strength of
the nonlinearity of a nonlinear Schrédinger equation which grants the possibility of
nonspreading Gaussian wave packet solutions for an inverted parabolic potential.
Our analysis is performed using the de Broglie-Bohm formalism.

PACS 03.65.-w — Quantum mechanics.

1. — Introduction

As pointed out in a recent paper [1], in the 21th century, information technology
will become very important to realize a worldwide communication network. Optical
transmission using short optical pulse train is a fundamental technology for achieving a
high-speed and long-distance global network. Among many optical transmission formats,
an optical soliton, which is created by balancing the anomalous group velocity dispersion
with the fiber nonlinearity, called the self-phase modulation, offers a great potential to
realize an advanced optical transmission system since the soliton pulse can maintain its
wave form over long distances. So, it is extremely important, from the experimental
and theoretical points of view [1], to investigate the existence and stability of solitons
under special conditions, that is, parameter functions describing dispersion, nonlinearity,
absorption and other properties that there are present in the signal transmission. The
existence and analytical stability of solitons have been extensively studied, for instance,
within the framework of nonlinear Schrédinger and Dirac-type equations [1-9]. Studies
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done by Nakazawa et al. [1] suggests that it could exist solitonlike steady-state pulse
when the governing equation is a NLSE with a parabolic potential. However, since their
analysis has been performed taking into account also dispersion effects, it is difficult to
clearly understand the essential contribution of the parabolic potential to the solitons
stability.

As is well known [1], there are soliton solutions to the NLSE for a constant external
field. The existence of soliton solutions in other potential energies, different from a
constant field has remained, for along time, an open question. According to Hasse [10],
it would be interesting to investigate the existence of solitons for a NLSE with an inverted
parabolic potential. We found a condition on the parameter controlling the strength of
the nonlinearity of the NLSE which grants the possibility of nonspreading Gaussian wave
packet solutions of the NLSE.

2. — Nonlinear Schrédinger equation and the De Broglie-Bohm formalism

Many nonlinear equations have soliton solutions characterized by widths which do
not spread in time. The solitons of great interest to energy transport have been the
nondispersing wave packet solutions of the nonlinear Schroédinger equation (NLSE):
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where m is the effective mass of the excitation, V; is a constant average potencial en-
ergy, and G is the parameter controlling the strength of the nonlinearity [10-13]. This
ubiquitous equation possesses a well-known wave packet soliton solution in terms of a
hyperbolic secant function:
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where k = (m G/2 h?) and v = [V, + (my2) v? — K% k2/2]/m v. This solution rep-
resents a nonspreading wave packet initially centered at zo and moving along a classical
trajectory with constant velocity v. ‘

There exist also soliton solutions to eq. (1) for a constant external field [10]. These
solitons move with constant acceleration and have the same shape as their counterpart
without the external field. Whether there exist soliton solutions in other potential en-
ergies other than for a constant field has remained an open question. As suggested by
Hasse [10], it would be interesting to possibly find solitons for the NLSE sliding down an
inverted parabolic potential. B

In this work, we answer the aboved-posed question by finding the conditions on the
parameter G which grant the possibility of nonspreading Gaussian wave packet solutions
to eq. (1) for an inverted parabolic potential. To this end, we develop a semiclassical
method for wave packets within the de Broglie-Bohm [14-18] formulation of quantum
mechanics and the theory of invariants. The notion.of trajectories within this formalism
.18 kept and the differences between the quantum and classical trajectories are exhibited.
This method can incorporate nonlinear semiclassical dynamical information and display
a direct connection between the macroscopic and microscopic levels of the problem.
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We begin by expressing the wave function in the form ¢ = ¢ exp [¢ $/h], ‘which

transform eq. (1) into [14-18] N ——
- Op | O(pv) _
®) %t o =0
Qv o 19,
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Equation (3) represents the conservation of probability with density p = ¢2, and
whereas eq. (4) describes trajectories of a particle with velocity v = (1/m)(85/0z)

subject to an arbitrary external potential-V,, the nonlinear potential
(5) Voo = — G ¢?
and the so-called quantum poténtial

vy
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which provides the connection between the quantum and classical levels. The quantum
trajectories are defined by the de Broglie guidance equation

- T = U0 D lemat = 5 55 o= *

With the help of egs. (4) and (7), we have
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Expansion of the quantum potential around the classical trajectory X (t) yields
(9) Vau(@,t) = Vau [X(t),8] + V@ [X(8), 8] [z — X(®)] +
V” t),t '
Tl O xap +
The semiclassical approximation can be obtained by setting t‘he second term in the |

expansion (the quantum force) to zero, i.e. Fyy [ = X(t)} = 0, which allows.the
quantum potential to be written explicitly: :

o - XOPF  1°
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which after integration yields'
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Substitution of eq. (11) into (4) gives -

(12) o(o,t) = i%[ X(0)] + X(t) . \

The semiclassical description of the wave packet dynamics can be accomplished by
expanding S(z, t), Vi(z, t), and Vy(z, t) around X (¢), namely

(13) S(e,t) = S[X(),4 + STXE), [ — X@)] +
+ ZEOA 1 xep +
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(15) Vae(z, 1) = Vg [X(0),8] + Vi [X(@®), t] [z — X(®#)] +

Vn/z [X (t)\z t]
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Connection to eq. (12) can be established using eq. (8), by collecting terms in [z —
X(#)]° and [z — X (2)]:

(16) s, = 229
an SO = e

Now substituting eqs. (10), (13)-(17) into eq. (7) and collecting terms in [z — X (¢)]?,
[z — X', and [r — X(¢)]° we have the following set of nonlinear equations which
describe the wave packet dynamics:
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where we have denoted So(t) = S[X(¢), t] the quantum action.

The wave packet dynamics is now completely determined by eqs. (11), (18)-(20). The
wave packet width and phase displays their quantum-mechanical nature through the
presence of the potentials in the last two terms of egs. (18) and (20). We impose here
the following conditions on egs. (18)-(20): o

@) a(0) = at) = a0; X(0) = Xo, X(©0) = Vo; So(0) = m Vo Xo.
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For a Gaussian soliton sliding down an inverted parabolic potential [V, = — 02 X2
we can show, after a straightforward, but tedious calculation, that '

(22) b, t) = (27ad) Y exp [ - Z}ch o - X ] x
X exp [w—;ﬂ[x- X)) + éL?ﬁ]x
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where X (t) = X, cosh (Q¢) + (Vo/Q) sinh (Q t)‘ and aq is a solution to the quartic
equation

G h?
(23) %~ (mwmz )+ oo = 0

For this equation to have a real solution we must have

3
(24) ' G > 1564/ 2

This condition establishes a minimum (nonzero) value for the controlling parameter
G, which can be of importance in describing the evolution of a Gaussian soliton. This
answers the question posed at the beginning of this work concerning the existence of
soliton solutions in other potential energies other than for a constant field. There exist
Gaussian soliton solutions to the NLSE accelerating down an inverted parabolic potential
and having the same shape as their counterpart without the external field provided that
condition (24) holds true.

3. — Conclusions

We have shown that, when the nonlinearity strength parameter G of the NLSE; de-

fined by eq. (1), obeys the critical condition, G > 1.56 4/ %Q, the wave packet solutions
behave as Gaussian solitons for an inverted parabolic potential. So, our predictions con-
firm Hasse suggestion [10].
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