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Abstract

New generalized squeezed states for the time-dependent harmonic oscillator
are found through the theory of invariants. Our method gives a
comparatively clearer picture than methods ‘using evolution operators
because we can establish a direct connection between the classical and
quantum solutions. The additional significance of our method is that it is
possible to find new generalized quantum squeezed states from just one
particular solution to the classical time-dependent oscillator. Accordingly,
more general results for the variance of x (squared uncertainty) are found for
the cases of linear sweep of the restoring force and compared to recent

results encountered in the literature.

Keywords: Time-dependent harmonic oscillator, quantum squeezed states

The time-dependent harmonic oscillator (TDHO) continues
to have widespread applications in -varjous branches of
physics [1-7]. Among numerous approaches to finding
exact solutions contained by the TDHO, we point out the
evolution operator method used recently by a number of
authors [1-3]. Furthermore, the recent generation of coherent
states of quantum fluids [5] and nonclassical squeezed states of
the electromagnetic field [6] typify the continued importance
of the TDHO. It has also been shown that displaced and
squeezed number states of a simple harmonic oscillator can
be generated by displacing the oscillator and changing its
frequency [3]. In addition, it is worth noticing an earlier
prescription for obtaining adiabatic invariants and coherent
states for the TDHO using the Born—Fock adiabatic theorem
for quantum operators to all orders [7]. )
Motivated by the earlier considerable interest in the
TDHO, we explore in this work the possibility of new
generalized squeezed states for the TDHO through the theory
of exact invariants. Our method gives a comparatively clearer
picture than methods using operators because we can establish
a direct connection between the classical and quantum cases.
The additional significance of our method is that it is possible
to find new generalized quantum squeezed states from just one
particular solution to the classical time-dependent oscillator.
Accordingly, we find more general results for the variance of
x (squared uncertainty) for the cases of linear sweep of the
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restoring force and compare them to recent results encountered
in the literature {1-4].

To this end, a general and exact solution to the Schrédinger
equation for the TDHO of frequency 2(z):

LY, ) R AM(x,n) (1,5 ‘
lhT = _ﬂW+<EmQ t)x )'W(x,t) )

can be found by first expressing the complex wavefunction in
a polar form:

Y(x, 1) = ¢(x, 1) expl(i/h)S(x, 1)] (€J)

where ¢(x,>t) and S(x,t) are real functions. In doing so,
equation (1) can be recast as

s 1 [as\* [1 n? 9% .
—+—(= “mP)x*) - ——==0 (3
ot 2m <8x> +<2m (t)x) 2me¢ 0x? ©)

and ) )
% + i ¢— ﬁ = 0. 4)
ot dx \ m 0x

Since we are interested in the most general Gaussian wave
packet solution to problem, we make the ansatz [8]

_ 2
(. 1) = (21a>(®) ™ exp [_[x4_a§(t(;l ] o

where a(t) and X(¢) are auxiliary functions of time, to be
determined in what follows.
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First, we substitute equation (5) into (4) and integrate the
result to obtain

aS(x, 1) ma(t)
ax a(t)

[x = X(@®)] +mX () ©®

where the constant of integration must be zero since ¢2
and [¢2(dS/dx)] vanish for (x| — oco. In fact, any well-
behaved function (such as any polynomial function of (x — X))
multiplied by ¢? clearly vanishes as |x| — oo. From
equation (5) we can derive the useful expression

n? 3% n? ) n?
—XOT

Next, the phase of the wavefunction can also be found by
integrating equation (3) in time with the help of equations (6)
and (7):

—_—— —— = ____[

2me¢ 9x2 8ma*(t)

M

ﬂnﬂ=?ﬁ2u—an+m&manan
, 2 -
Ofdt (me ) - msz Xt — maZ(t')>'
®

From
relations:

equation (8) we can construct the following

2 Py
- a_z) @ =X+ (—maX
a a

o2 1 1 n?

+mX) x - X)

- — ZmrHXx: - —
mx + 2mX 2m£2 @) Ao ()]
and
1 [38\? 52
m 2,
— —_— = X g
2m <8x) 2a2 — X7+ (x )+ mX (10)

Finally, equation (4) can be recast with the help of
equations (7), (13) and (10):
2

_rzz_ o 2 _ h _ 2
Za[a +Q“(t)a 4m2a3](x :X)

+m[X + QLOX]x - X) = (11)

This equation is satisfied once the coefficients of (x — X)?
and (x — X) are set equal to zero, namely

(1] 2 h2
a+Q(a = m (12)
X+ QX)X =o0. 13)

The wave packet dynamics are now completely deter-
mined by the solutions to equations (12) and (13), which de-
scribe the time evolution of the width and centre of the packet,
respectively. Integration of equations (12) and (13) are subject
to the general initial conditions
a(0) =

a(0) = ay, (14)

X(0) =X, X0 = (15)
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Next, we show that the general solution to the quantum
equation (12) can be obtained with the help of just one
patticular solution to the classical equation (13). To this end,
let us now substitute , :

(16)

a(t) = r(@alt)
and
do = dt/a’(z) 17
into equation (16) to obtain
h2 1\?
2,
=[r'(®)]" + ( (9)) (18)
provided that
o+ Q% (t)a = 0. (19)

Upon a second integration:equation (18) can be recast with

the help of equation (16) as
n? ‘
a(t) = (4 ot 1112) al(t) + Lo (t) + 21 Loy (o (t)
(20)

where o1 and o, are two independent solutions to the classical
equation (19); I; and I represent two invariants of motion of
the problem.

In addition, the two independent solutions to equation (19)
can be obtained in general from just one particular solution to
the same equation, namely

a1(t) = a(t) (1)

and < |
mm_am/ e 22)

If initial conditions are imposed as follows:
a(0) =1 and  @0)=0 (23)
we are led to
a@ =1 o0)= ¢1(0) =
. , @4)
and a(0) = 1.

These initial conditions allow us to find the two invariants
of motion:

I =d5 + (a3/7?) (25)
and
I = agdo/1d} + (aj/7)]. (26)

Thus, the complete dynamics of the TDHO can be found
with the help of equations (21), (22), (25) and (26): the
generalized squeezed states for the TDHO wave packet is
finally written as -

26\[ [+ dF

a(t)=a0a(t)ll+<?g)|:/ az——(’t/)]
A+ N[ [* dr T2
(S9N ]

2ma%/h, ¢ = 2mapdo/h, a(0) =ay and

@7

where 7 =
a(0) = dy
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. In turn; the packet centre of gravity evolves according to

dr’ ]
a2}’

Now, the full wave packet can now be written in its final,
general form:

X(@) = o) {Xo + VO/ (28)

- 2
¥(x, 1) = Qra* ()™ exp [‘[x__’iﬂ]

4a* (1)

X exp [%[m_a[x — X(t)]2 +m).((t)[x — X(t)]:“ ‘

xexp{};l/ dt( mX 2@t

_Lerxe ___hz__>}
O E ) |

The wave packet surrounds the position of the classical
particle and the centre of gravity of the packet follows
the classical trajectory: its time evolution is completely
determined by the quantum and classical solutions (27)
and (28), respectively. At the moment of observation, the
packet is moving with an initial velocity V, and spreading
with an initial rate dy. The associated variance of x (squared
uncertainty) can be written as [Ax(1)]? = a*(t), which
exhibits the generalized squeezed states for the TDHO. Above
all, our method gives a general solution to the quantum
TDHO from just one particular solution «(¢) to the classical
equation (19).

To check the validity of our solution, let us consider as
a particular case the TDHO treated by Mostafazadeh [1], Ji
et al [2], Lo [3] and Agarwal and Kumar [6], for which the
restoring force is linearly swept, i.e.

(29)

Q2 for —oo<t <0

Q1) = { Q3(1 + Bot/T) for 0<t<T  (30)
Q2(1 + Bo) for T <t < 0.

The oscillator is initially in the ground state. Then,

for 0 < t < T, the oscillator passes through the intermediate

sweeping frequency region. Finally, for T < ¢t < oo,

the oscillator reaches the last region. With the help of

equations (21), (22) and (27), the variance of the position

(squared uncertainty) a?(¢) of the new generalized squeezed

states for this case can be explicitly calculated as follows!.
For —o0 <t <0,

2
a*@t) = ag{ cos? Qot + (_g) cos Qot sin Qo
'L'Q()

1+¢?
+< gz ) sin? Qot}.
‘TZSZO

The classical solutions can be readily found.
For —oco< t < 0,

(3la)

v
X(t) = Xocos Qot + 9—0 sin Qot.
0

For0<t<T,

. 7 .
X@) = Xoih @+ =255,

Q&(T/B0)

ForT <t < o0,

X&) = Xocos Qoy/(1+ Bo)t + #«/%W sin Q0+/(L + Po)t.
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For0<t<T,

2¢ ~ ~
a*@t) = a(z)n{le/3(z) + <W>Jl/3(2)y1/a(z)
14¢2 ~
+(rzs23:;/ﬂo)2)yf/3“)}' C1)

ForT <t < o0,

cos? Qo /(T + Bo)t + (T—Zgg)
x €08 £20+/(1 + Bo)t sin o/ + Bo)t
2 .
+ (—ri—rzs;:m ﬁo)) sin? Qo/T + Bo)t

a’(t) = a%

(31c)

where J; ,3(z) and )¢] /3(z) are renormalized Bessel functions of
order 1/3 that take into account the initial conditions (24), z =
(2/3){Bo(Q0) /2| THt +(T /B)/?, 1 = (Q0)'/* ¢+ T/ po)'/?
and t and ¢ are defined as in equation (27). If we let ¢ = 0,
the results of equations (31a)—(31c¢) reduce to those found by
Mostafazadeh [1], Ji et al [2], Lo [3] and Agarwal and Ku-
mar [6]. These new dispersive properties of the TDHO are
not apparent within the approaches using the Heisenberg and
Schrodinger pictures [1-6). Finally, let us now consider the
general coherent solution given by Malkin ez al [7]. For sim-
plicity, when their solution is reduced to the case of a simple
harmonic oscillator? (with constant frequency) it yields a zero

value for a(O) (i.e. ¢ = 0). We are led to conclude that their
general coherent solution (for an arbitrary time-dependent fre-
quency) is therefore a special case of our equation (27).

To sum up, new generalized squeezed states for the TDHO
are found through the theory of invariants. Our method gives a
comparatively clearer picture than methods using evolution op-
erators because we can establish a direct connection between
the classical and quantum solutions. The-additional signifi-
cance of our method is that it is possible to find generalized
quantum squeezed states from just one particular solution to
the classical time-dependent oscillator.
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2’ For the harmonic oscillator of mass m and constant frequency 2o the width
a(t) (from equation (27)) is explicitly given by
2 '

8—2?’5—52- [(A + B) + (A — B)? + C2 cos[(2Q0t) — 9]].

where ¢ = Zmao/h ¢ = 2maodo/h, a(0) = ao, a(O) do, A = Q372
B =[1+¢%, C = 2Qotc and 6 = arctan[C/(A = B)]. If we let ¢ = 0
the above equation reduces to the corresponding expression (in our notation)
obtained in section 2 of the first publication in (71

at(t) =



