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Abstract

A new quantum mechanical wave equation describing the dynamics of an extended
electron is derived via Bohmian mechanics. The solution to this equation is found through
a wave packet approach which establishes a direct correlation between a classical variable
with a quantum variable describing the dynamics of the center of mass and the width of the
electron wave packet. The approach presented in this paper gives a comparatively clearer
picture than approaches using elaborative manipulation of infinite series of operators. It is
shown that the new Schrödinger equation is free of any runaway solutions or any acausal
responses.
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About a century ago, Lorentz [1] and Abraham [2] argued that when an electron
is accelerated, there are additional forces acting due to the electron’s own electromagnetic
field. However, the so-called Lorentz-Abraham equation for a point-charge electron

m
dV

dt
=

2e2

3c3
d2V

dt2
+ Fext (1)

was found to be unsatisfactory because, for Fext = 0, it admits runaway solutions. These
solutions clearly violate the law of inertia.

Since the seminal works of Lorentz and Abraham, inumerous papers and textbooks
have given great consideration to the proper equation of motion of an electron.[3]-[11] The
problematic runaway solutions were circumvented by Sommerfeld [5] and Page [6] by going
to an extended model. In the nonrelativistic case of a sphere with uniform surface charge,
such an electron obeys in good approximation the difference-differential equation:[7]-[9]

m
dV

dt
=

e2

3L2c
[V (t− 2L/c) − V (t)] + Fext. (2)

This extended model is finite and causal if the electron size L is larger than the
classical electron radius re = e2/mc2. I shall limit the discussion here to the sphere with
uniform surface charge; the case of a volume charge is considerably more complicated and
adds nothing to the understanding of the problem.

The dynamics of charges is a key example of the importance of obeying the validity
limits of a physical theory. If classical equations can no longer be trusted at distances of
the order of (or below) the Compton wavelength, what is the Schrödinger equation that can
replace Equation (2)? Within QED, workers have not been able to derive an equation of
motion and it is unclear whether QED can actually produce an equation of motion at all.
This work proposes an answer to this problem in the nonrelativistic regime.

A new quantum mechanical wave equation describing the dynamics of an extended
electron is derived via Bohmian mechanics. The solution to this equation is found through
a wave packet approach which establishes a direct correlation between a classical variable
with a quantum variable describing the dynamics of the center of mass and the width of
the electron wave packet. It is shown that the new Schrödinger equation is free of any
runaway solutions or any acausal responses. Besides, the approach presented in this work
gives a comparatively clearer picture than the modern time quantum approach carried out
by Moniz and Sharp.[9] They derived an infinite order differential equation, i.e., an infinite
series of derivatives that apparently cannot be summed.

The Bohmian interpretation of quantum mechanics[12]-[27] provides a framework for
analyzing quantum systems by assuming that the wave function which satisfies Schrödinger’s
equation is no longer the most complete description of the state of the system. It ascribes a
particle motion via the de Broglie guidance condition

dx

dt
= v(x, t)|x=x(t) =

1

m

∂S

∂x

∣∣∣∣∣
x=x(t)

(3)
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where v represents the particle velocity and S is the phase of the wave function ψ. By
expressing the wave function in polar form as

ψ(x, t) = φ(x, t) exp(iS(x, t)/h̄), (4)

Schrödinger’s equation can be recast as

∂v

∂t
+ v

∂v

∂x
= − 1

m

∂

∂x
(Vext + Vqu) , (5)

and

∂ρ

∂t
+

∂

∂x
(ρv) = 0. (6)

.

Equation (5) can be regarded as a modified Hamilton-Jacobi equation while Equation
(6) is a continuity equation for ρ = φ2; Vext denotes the external classical potential and

Vqu = − h̄2

2mφ

∂2φ

∂x2
(7)

is the so-called quantum potential.

Within the framework of Bohmian mechanics, a quantum extension to the Sommerfeld-
Page equation (2) for an electron sphere with uniform surface charge in the absence of
external forces can be accomplished by writing:

∂v

∂t
+ v

∂v

∂x
=

e2

3mL2c
[v(t− 2L/c) − v(t)] +

1

m

∂

∂x

(
h̄2

2m
√
ρ

∂2√ρ
∂x2

)
. (8)

Then, Equations (4) and (8) yield:

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
+

{
ih̄e2

6mL2c
ln

(
ψ(x, t− 2L/c)ψ∗(x, t)
ψ∗(x, t− 2L/c)ψ(x, t)

)}
ψ(x, t). (9)

In order to find the most general Gaussian wave packet solution to Equation (9), the
following ansatz is made:

ρ(x, t) =
(
2πa2(t)

)−1/2
exp

[
− [x−X(t)]2

2a2(t)

]
, (10)

where a(t) and X(t) are auxiliary functions of time, to be determined in what follows: they
represent the width and center of mass of wave packet, respectively.
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First, Equation (10) is substituted into (6) and integrated the result to obtain

v(x, t) =
ȧ(t)

a(t)
[x−X(t)] + Ẋ(t) (11)

where the constant of integration must be zero since ρ and ρ (∂S/∂x) vanish for |x| → ∞.
In fact, any well-behaved function of (x −X) multiplied by ρ clearly vanishes as |x| → ∞.
Then, substitution of Equations (10) and (11) into Equation (8) yields

m

2a(t)

{
ä(t) − e2

3mL2c
[ȧ(t− 2L/c) − ȧ(t)] − h̄2

4m2a3(t)

}
[x−X(t)]2 +

m

{
Ẍ(t) − e2

3mL2c

[
Ẋ(t− 2L/c) − Ẋ(t)

]}
[x−X(t)] = 0. (12)

This polynomial equation is satisfied once the coefficients of [x−X(t)] and [x−X(t)]2

are set equal to zero, namely,

Ẍ(t) − e2

3mL2c

[
Ẋ(t− 2L/c) − Ẋ(t)

]
= 0 (13)

and

ä(t) − e2

3mL2c
[ȧ(t− 2L/c) − ȧ(t)] =

h̄2

4m2a3(t)
. (14)

The wave packet dynamics is now completely determined by the Equations (13) and
(14). The first equation is the Sommerfeld-Page equation (describing here the time evolution
of center of the wave packet) which does not have runaway solutions.[9] The second equation
is a new result (describing here the time evolution of the width of the wave packet). This
equation is free of any runaway solutions or any acausal response due of the restrictive term
on the right hand side: physically this means that for t > 2e2/3mc3 (which is the time
required for light to traverse the extended electron) this term settles down the dynamics of
the wave packet.

To sum up, a new formalism to describe the nonrelativistic quantum dynamics of
an extended electron has been presented in this work. The equations derived give a com-
paratively clearer picture than other formalisms using elaborative manipulation of infinite
series of operators. The approach here is also reasonable because the electron is smeared
out due to the uncertainty principle and has the appropriate feature of a wave packet. In
fact, there exists as yet no proper formulation in quantum electrodynamics (and may not
be possible within QED as a perturbation theory). The only calculation by QED was re-
ported by Low,[28] who has not been able to derive an equation of motion and it is unclear
whether QED can actually produce an equation of motion at all. To my knowledge, this
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work presents the only nonrelativistic Schrödinger equation available to describe the prob-
lem. Further, Equation (9) may be used to investigate quantum tunneling through potential
barriers in light of the work developed by Denef et al. on the so-called classical tunneling.[29]
Work in this direction is in progress.
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